MtDNA analysis of early-medieval human remains from the cemetery in Grodowice (PL)

Autor

  • Anna Kubica-Grygiel Institute of Archaeology Jagiellonian University, Kraków Gołębia 11 st. 31-007 Kraków, Poland https://orcid.org/0000-0001-6414-7405
  • Veronika Csáky Laboratory of Archaeogenetics Institute of Archaeology Research Centre for the Humanities Hungarian Academy of Sciences, Budapest Tóth Kálmán street 4. Budapest, 1097, Hungary https://orcid.org/0000-0002-7225-7265
  • Balázs Gusztáv Mende Laboratory of Archaeogenetics Institute of Archaeology Research Centre for the Humanities Hungarian Academy of Sciences, Budapest Tóth Kálmán street 4. Budapest, 1097, Hungary https://orcid.org/0000-0001-7667-8633

DOI:

https://doi.org/10.23858/PA67.2019.011

Słowa kluczowe:

ancient DNA, mitochondrial DNA, medieval period, Lesser Poland

Abstrakt

The genetic composition of the medieval populations of Central Europe, Poland in particular, has been poorly investigated to date. Although a few DNA datasets from Poland have been published recently, no large-scale ancient DNA study on medieval populations has hitherto been reported. This paper reports the study of mitochondrial DNA (mtDNA) and presents the first population-level human DNA study from Lesser Poland by establishing mitochondrial DNA profiles for 13 samples from the Grodowice cemetery dated to the Medieval Period (11th to mid-13th century). The medieval sequences encompass almost the entire range of Western Eurasian macro-haplogroups: H, J, U. Interestingly, there is one sample which belongs to the Asian haplogroup G. aDNA sequences were compared with a dataset of 35,203 present-day sequences of the HVR I region of mtDNA including European, Near Eastern, and Asian populations, as well as 775 ancient sequences. Analyses of population genetics were performed, including genetic distances (FST), multidimensional scaling (MDS), principal component analysis (PCA) and shared haplotype analysis (SHA). The shared haplotype analysis (SHA) showed that the medieval population from Grodowice shares the majority of haplotypes with the medieval populations from the contact-zones of today’s Slovakia and Croatia (53.85%) as well as with Hungarian conquerors (46.15%). 

Pobrania

Download data is not yet available.

Bibliografia

Anderson S., Bankier A.T., Barrel B.G., De Brujin M.H., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young I.G. (1981). Sequence and Organization of the Human Mitochondrial Genome. Nature, 290, 457-465.

Andrews R.M., Kubacka I., Chinnery P.F., Lightowlers R.N., Turnbull D.M., Howell N. (1999). Reanalysis and Revision of the Cambridge Reference Sequence for Human Mitochondrial DNA. Nature Genetics, 23, 147.

Behar D.M., Van Oven M., Rosset S., Metspalu M., Loogväli E.L., Silva N.M. (2012). A “Copernican” reassessment of the human mitochondrial DNA tree from its root. American Journal of Human Genetics, 90, 675- 684.

Bollongino R., Nehlich O., Richards M.P., Orschiedt J., Thomas M.G. (2013). 2000 years of parallel societies in Stone Age Central Europe. Science, 342, 479-81.

Brandt G., Haak W., Adler C.J., Roth C., Szécsényi-Nagy A. (2013). Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity. Science, 342, 257-261.

Brotherton P., Haak W., Templeton J., Brandt G., Soubrier J., Jane Adler C. (2013). Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nature Communications, 4, 1764.

Brown T., Brown K. (2011). Biomolecular Archaeology. An Introduction. 1th ed. Chichester. Comas D., Calafell F., Mateu E., Pérez-Lezaun A., Bosch E., Martínez-Arias R., Clarimon J., Facchini F., Fiori G., Luiselli D., Pettener D., Bertranpetit J. (1998). Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations. American Journal of Human Genetics, 63(6), 1824-1838.

Comas D., Plaza S., Wells R.S., Yuldaseva N., Lao O., Calafell F., Bertranpetit J. (2004). Admixture, migrations, and dispersals in Central Asia: evidence from maternal DNA lineages. European Journal of Human Genetics, 12(6), 495-504.

Csősz A., Szécsényi-Nagy A., Csákyová V., Langó P., Bódis V., Köhler K., Tömöry G., Nagy M., Mende B.G. (2016). Maternal Genetic Ancestry and Legacy of 10(th) Century AD Hungarians. Scientific Reports, 6, 33446.

Csákyová V., Szécsényi-Nagy A., Csősz A., Nagy M., Fusek G., Langó P., Bauer M., Mende B.G., Makovický P., Bauerová M. (2016). Maternal Genetic Composition of a Medieval Population from a Hungarian- Slavic Contact Zone in Central Europe. PLoS ONE, 11(3), e0151206.

Curta F. (2001). The making of the Slavs. History and archaeology of the Lower Danube Region, ca. 500–700. Cambridge studies in medieval life and thought Fourth series, 52. Cambridge; New York.

Derbeneva O.A., Starikovskaya E.B., Wallace D.C., Sukernik R.I. (2002). Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis. American Journal of Human Genetics, 70(4), 1009-1014.

Derenko M., Denisova G., Malyarchuk B., Dambueva I., Bazarov B. (2018). Mitogenomic diversity and differentiation of the Buryats. Journal of Human Genetics, 63(1), 71-81.

Derenko M., Malyarchuk B., Grzybowski T., Denisova G., Dambueva I., Perkova M., Dorzhu C., Luzina F., Lee H.K., Vanecek T., Villems R., Zakharov I. (2007). Phylogeographic analysis of mitochondrial DNA in northern Asian populations. American Journal of Human Genetics, 81(5), 1025-1041.

Excoffier L., Lischer H.E.L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.

Fedorova S.A., Bermisheva M.A., Villems R., Maksimova N.R., Khusnutdinova E.K. (2003). Analysis of mitochondrial DNA haplotypes in yakut population. Molecular Biology, 37(4), 643-653.

Gokcumen O., Dulik M.C., Pai A.A., Zhadanov S.I., Rubinstein S., Osipova L.P., Andreenkov O.V., Tabikhanova L.E., Gubina M.A., Labuda D., Schurr T.G. (2008). Genetic Variation in the Enigmatic Altaian Kazakhs of South-Central Russia: Insights into Turkic Population History. American Journal of Physical Anthropology, 136(3), 278-293.

Horai S., Murayama K., Hayasaka K., Matsubayashi S., Hattori Y., Fucharoen G., Harihara S., Park K.S., Omoto K., Pan I.H. (1996). MtDNA polymorphism in East Asian Populations, with special reference to the peopling of Japan. American Journal of Human Genetics, 59(3), 579-590.

Howell N., Elson J.L., Howell C., Turnbull D.M. (2007). Relative Rates of Evolution in the Coding and Control Regions of African mtDNAs. Molecular Biology and Evolution, 24, 2213-2221.

Imaizumi K., Parsons T.J., Yoshino M., Holland M.M. (2002). A new database of mitochondrial DNA hypervariable regions I and II sequences from 162 Japanese individuals. International Journal of Legal Medicine, 116(2), 68-73. Irwin

J.A., Ikramov A., Saunier J., Bodner M., Amory S., Röck A., O’Callaghan J., Nuritdinov A., Atakhodjaev S., Mukhamedov R., Parson W., Parsons T.J. (2010). The mtDNA composition of Uzbekistan: a microcosm of Central Asian patterns. International Journal of Legal Medicine, 124(3), 195-204.

Juras A., Dabert M., Kushniarevich A., Malmström H., Raghavan M., Kosicki J.Z., Metspalu E., Willerslev E., Piontek J., Caramelli D. (2014). Ancient DNA Reveals Matrilineal Continuity in Present-Day Poland over the Last Two Millennia. PLoS ONE 9, 10 (e110839).

Kalmár T., Bachrati C.Z., Marcsik A., Raskó I. (2000). A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acids Research, 28, 67.

Kong Q.P., Yao Y.G., Liu M., Shen S.P., Chen C., Zhu C.L., Palanichamy M.G., Zhang Y.P. (2003). Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China. Human Genetics, 113(5), 391-405.

Lee H.Y., Yoo J.E., Park M.J., Chung U., Shin K.J. (2006). Mitochondrial DNA control region sequences in Koreans: identification of useful variable sites and phylogenetic analysis for mtDNA data quality control. International Journal of Legal Medicine, 120(1), 5-14.

Li H., Cai X., Winograd-Cort E.R., Wen B., Cheng X., Qin Z., Liu W., Liu Y., Pan S., Qian J., Tan C.C., Jin L. (2007). Mitochondrial DNA diversity and population differentiation in southern East Asia. American Journal of Physical Anthropology, 134(4), 481-488.

Liu C., Wang S.Y., Zhao M., Xu Z.Y., Hu Y.H., Chen F., Zhang R.Z., Gao G.F., Yu Y.S., Kong Q.P. (2010). Mitochondrial DNA polymorphisms in Gelao ethnic group residing in Southwest China. Forensic Science International: Genetics, 5(1), 4-10.

Mabuchi T., Susukida R., Kido A., Oya M. (2007). Typing the 1.1 kb control region of human mitochondrial DNA in Japanese individuals. Journal of Forensic Science, 52(2), 355-363.

Maruyama S., Minaguchi K., Saitou N. (2003). Sequence polymorphisms of the mitochondrial DNA control region and phylogenetic analysis of mtDNA lineages in the Japanese population. International Journal of Legal Medicine, 117(4), 218-225.

Mielnik-Sikorska M., Daca P., Malyarchuk B., Derenko M., Skonieczna K., Perkova M., Dobosz T., Grzybowski T. (2013). The history of Slavs inferred from complete mitochondrial genome sequences. PLoS One 8(1): e54360. doi: 10.1371/journal.pone.0054360.

Nicholas K.B., Nicholas H.B.J., Deerfield D.W. (1996). GeneDoc: Analysis and visualization of genetic variation. EMBNEW.NEWS, 4(1), 14.

Oota H., Kitano T., Jin F., Yuasa I., Wang L., Ueda S., Saitou N., Stoneking M. (2002). Extreme mtDNA homogeneity in continental Asian populations. American Journal of Physical Anthropology, 118(2), 146-153.

van Oven M., Kayser M. (2009). Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Human Mutation, 30, 386-394.

Pakendorf B., Novgorodov I.N., Osakovskij V.L., Danilova A.P., Protod’jakonov A.P., Stoneking M. (2006). Investigating the effects of prehistoric migrations in Siberia: genetic variation and the origins of Yakuts. Human Genetics, 120(3), 334-353.

Pakendorf B., Wiebe V., Tarskaia L.A., Spitsyn V.A., Soodyall H., Rodewald A., Stoneking M. (2003). Mitochondrial DNA evidence for admixed origins of central Siberian populations. American Journal of Physical Anthropology, 120(3), 211-224.

Pfeiffer H., Steighner R., Fisher R., Mörnstad H., Yoon C.L., Holland M.M. (1998). Mitochondrial DNA extraction and typing from isolated dentin-experimental evaluation in a Korean population. International Journal of Legal Medicine, 111(6), 309-313.

Pimenoff V.N., Comas D., Palo J.U., Vershubsky G., Kozlov A., Sajantila A. (2008). Northwest Siberian Khanty and Mansi in the junction of West and East Eurasian gene pools as revealed by uniparental markers. European Journal of Human Genetic, 16(10), 1254-1264.

Płoszaj T., Jędrychowska-Dańska K., Masłowska A., Kozłowski T., Chudziak W., Bojarski J., Robaszkiewicz A., Witas H.W. (2016). Analysis of medieval mtDNA from Napole cemetery provides new insights into the early history of Polish state. Annals of Human Biology, 44(1), 91-94.

Płoszaj T., Jędrychowska-Dańska K., Zamerska A., Witas H.W. (2017). Ancient DNA analysis might suggest external origin of individuals from chamber graves placed in medieval cemetery in Pień, Central Poland. Anthropologischer Anzeiger, 74(4), 319-337.

Puzyrev V.P., Stepanov V.A., Golubenko M.V., Puzyrev K.V., Maksimova N.R., Kharkov V.N., Spiridonova M.G., Nogovitsyna A.N. (2003). MtDNA and Y-chromosome lineages in the Yakut population. Genetika, 39(7), 975-981.

Qian Y.P., Chu Z.T., Dai Q., Wei C.D., Chu J.Y., Tajima A., Horai S. (2001). Mitochondrial DNA polymorphisms in Yunnan nationalities in China. Journal of Human Genetics, 46(4), 211-220.

Röck A.W., Dür A., Van Oven M., Parson W. (2013). Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA). Forensic Science International: Genetics, 7, 601-609.

R Development Core Team. A Language and Environment for Statistical Computing. Vienna, Austria: The R Foundation for Statistical Computing. (2012). Available: http://www.r-project.org/

Shapiro B., Hofreiter M. (2012). Ancient DNA methods and protocols. Methods in Molecular biology. New York.

Slatkin M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462.

Soares P., Achilli A., Semino O., Davies W., Macaulay V., Bandelt H.J. (2010). The Archaeogenetics of Europe. Current Biology, 20, 174-183.

Stewart J.B., Chinnery P.F. (2015). The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nature Revievs. Genetics, 16(9), 530-542.

Tajima A., Hayami M., Tokunaga K., Juji T., Matsuo M., Marzuki S., Omoto K., Horai S. (2004). Genetic origins of the Ainu inferred from combined DNA analyses of maternal and paternal lineages. Journal of Human Genetics, 49(4), 187-193.

Tamura K., Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512-526.

Tanaka M., Cabrera V.M., González A.M., Larruga J.M., Takeyasu T., Fuku N., Guo L.J., Hirose R., Fujita Y., Kurata M., Shinoda K., Umetsu K., Yamada Y., Oshida Y., Sato Y., Hattori N., Mizuno Y., Arai Y., Hirose N., Ohta S., Ogawa O., Tanaka Y., Kawamori R., Shamoto- Nagai M., Maruyama W., Shimokata H., Suzuki R., Shimodaira H. (2004). Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Research, 14(10A), 1832-1850.

Tömöry G., Csányi B., Bogácsi-Szabó E., Kalmár T., Czibula A., Csősz A., Priskin K., Mende B., Langó P., Downes C.S., Raskó I. (2007). Comparison of maternal lineage and biogeographic analyses of ancient and modern Hungarian populations. American Journal of Physical Anthropology, 134(3), 354-368.

Torroni A., Achilli A., Macaulay V., Richards M., Bandelt H.J. (2006). Harvesting the fruit of the human mtDNA tree. Trends in Genetics, 22, 339-345.

Wen B., Xie X., Gao S., Li H., Shi H., Song X., Qian T., Xiao C., Jin J., Su B., Lu D., Chakraborty R., Jin L. (2004). Analyses of genetic structure of Tibeto-Burman populations reveals sex-biased admixture in southern Tibeto-Burmans. American Journal of Human Genetics, 74(5), 856-865.

Xie C.Z., Li C.X., Cui1 Y.Q., Zhang Q.C., Fu Y.Q., Zhu H., Zhou H. (2007). Evidence of ancient DNA reveals the first European lineage in Iron Age Central China. Proceeding of the Royal Society. Biological Sciences, 274, 1597-1601.

Yao Y.G., Kong Q.P., Bandelt H.J., Kivisild T., Zhang Y.P. (2002a). Phyloeographic differentiation of mitochondrial DNA in Han Chinese. American Journal of Human Genetics, 70(3), 635-651.

Yao Y.G., Kong Q.P., Man X.Y., Bandelt H.J., Zhang Y.P. (2003). Reconstructing the evolutionary history of China: a caveat about inferences drawn from ancient DNA. Molecular Biology and Evolution, 20(2), 214- 219.

Yao Y.G., Kong Q.P., Wang C.Y., Zhu C.L., Zhang Y.P. (2004). Different matrilineal contributions to genetic structure of ethnic groups in the silk road region in china. Molecular Biology and Evolution, 21(12), 2265-2280.

Yao Y.G., Lü X.M., Luo H.R., Li W.H., Zhang Y.P. (2000). Gene admixture in the silk road region of China: evidence from mtDNA and melanocortin 1 receptor polymorphism. Genes and Genetic Systems, 75(4), 173- 178.

Yao Y.G., Nie L., Harpending H., Fu Y.X., Yuan Z.G., Zhang Y.P. (2002b). Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity. American Journal of Physical Anthropology, 118(1), 63-76.

Opublikowane

2019-11-26

Jak cytować

Kubica-Grygiel, A., Csáky, V., & Mende, B. G. (2019). MtDNA analysis of early-medieval human remains from the cemetery in Grodowice (PL). Przegląd Archeologiczny, 67, 291–306. https://doi.org/10.23858/PA67.2019.011

Numer

Dział

Artykuły
Share |